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Introduction

0.1 Rescorla and Wagner
0.1.1 Reward Learning Model

Many psychologists, neuroscientists, and computer science specialists have
developed equations that reflect probabilities underlying reward processes.
Rescorla & Wagner [4] were one of the earliest professionals to develop a
conceptualization of reward learning as emanating from changes in the asso-
ciative strength and valuation of a rewarding stimulus and rewarding task.
As cited by Rescorla & Wagner [4] their model was strongly influenced by
Hullian mathematical model [2], which posited that changes in response prob-
ability for a given trial (Ap,) emanated from a learning rate parameter ()
times the learning asymptote () less the probability of a response in a given

trial (py,).

They expanded the Hullian Model by focusing on the interplay of rate pa-
rameters relating to stimulus salience and learning, the associative strength
inherently in the US and the US’s influence on the CS. Accordingly, changes
in the associative strength and valuation of a rewarding stimulus and re-
warding task, (A V,, ) emanate from the magnifying power of learning rate
parameters associated with stimulus salience (4 o; x) and learning (/3,,) asso-
ciated with the unconditioned stimulus (US) and conditioning contexts times
the asymptotic level of the US’s associative strength (\,) less the immedi-
ate value of the associative strength of specific contextual stimuli (A and X)
associated with the rewarding US stimulus (V).

The difference between (A) and (V) reflected CS’s ability for taking
on US’s rewarding qualities and ability for predicting later US’s occurrence.

1



i.e. the smaller the difference between A, and V, ., the greater the CS’s
associative strength. Conversely, the larger the difference, the smaller the
associative strength , and the smaller the CS rigor for predicting later US
occurrence. The accuracy of the conditioned response (CR) (and evidence
of accelerated learning) was reflected in reduced distance between both val-
ues A\, and V,, . The greater the CS’s associative strength, the greater its
ability at predicting later US occurrence. In this indirect sense the reduced
distance between ), and V, is also reflective of enhanced probability of US
occurrence.

With nonreinforcement, Rescorla & Wagner [4] noted that there was a
reduction in US’s, \,, availability and this reduced the organism’s motiva-
tion to work toward obtaining reward. Accordingly, with the reduction in
US’s availability, the CS, V, ., lost its associative strength in response to the
reduction of pairing between the two.

According to Rescorla & Wagner many trials with many different condi-
tioned contextual stimuli (including the CS), AX, may be reflected accord-

ingly.
A Vay=asfi(M —V,,) in trial 1.
A Vy =axfi(M —V,,) in trial 1.
AV =ausfa(Aa—V,,) in trial 2.
A Vx = axf(As —V,,) in trial 2.

If we take this analysis one step further, we may conclude, that the value
of task reward learning, in total, can be summarized as follows.

AV, = Z Wy B (An = Viiy)
=1

Whereby, reward task learning is the sum of stimulus attributes (i.e. US’s
and associated CS and contextual stimuli salience and learning rate param-
eters) times the asymptomic difference between US and CS values.

Rescorla and Wagner [4, p.74-75] identified three central notions underly-
ing their model. The first, as noted above, modified and elaborated on Hul-
lian theory, which addressed key points of a learning parameter (3), asymp-
tote of learning (\), and probability of response (p,,) [2]. The second central
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notion suggested that ”"organisms only learn when events violate their ex-
pectations.” Accordingly, expectations generated by the US and associated
CS and conditioning contexts are ”only modified when consequent events
disagree with the composite expectation.” The third central notion proposed
that conditioning processes are dependent on the associative strength of all
stimuli occurring during a trial with the US. Conditioned response (CR)
changes to a CS are limited to the maximal generated UR, which a partic-
ular US can elicit. Rescorla & Wagner [4, p.75] concluded that their model
describes "learning curves for strength of association, not response probabil-
ity” (as suggested in central notions 1 and 2).

0.2 Sutton and Barto
0.2.1 An Interpretation of Rescorla & Wagner

Sutton and Barto’s [6] conceptualization of Rescorla & Wagner’s model
centered on Rescorla & Wagner’s central notion number 2, namely that learn-
ing occurs in situations where events violate expectations. Accordingly, the
US () represents “the actual US level on a trial” [6, p.519](as opposed to
Rescorla & Wagner’s US’s maximal associative strength) and V as repre-
senting the expected or predicted value (in contrast to Rescorla & Wagner’s
CS’s maximal associative strength it could attain in its temporal, proximal
association with the US).

Where the Rescorla & Wagner model examines the relationship between
the US-CS, Sutton & Barto’s [6, p.502] conceptualization of Rescorla & Wag-
ner’'s A — V. centered on the discrepancy between A - V. "where(by) A
represents the actual US level on a trial and V represents the expected or
predicted level”.

Accordingly, Sutton & Barto’s [6] interpretation evolved in the following
manner.

AV = (Level of US Processing) x (Level of CS Processing)
and
AV = Reinforcement x Eligibility

Where the change in reinforcement value evolves from the US’s ability for
reinforcement and the eligibility or accessibility for reinforcement it grants to
the CS in response to their temporal, proximal and associative relationship.
As cited above Rescorla & Wagner’s model is as follows.

AV =af(A=V,,)
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Sutton & Barto [6] interpreted the above as follows.
A‘/Z:ﬁ()\—‘?) X OéiXi

Their reinterpretation can be further delineated as follows.

E/_/ \/—/

REINFORCEMENT ELIGIBILITY

According to Sutton and Barto’s [6] interpretation of Rescorla & Wagner’s
[4] , B (A — V) was associated with the US. 3 was a positive constant
and A\ — V reflected the difference and discrepancy between expected US
occurrence less its actual occurrence. The salience rate parameter () was
associated with CS’s salience. In contrast, Rescorla & Wagner associated
both rate parameters for stimulus salience («) and learning () with both
the US & CS. Therefore one major difference between both models stemmed
from their respective interpretation of rate parameters or constants

A second major difference between the two centers on their respective
conceptualization of V,, and o, X;. Rescorla & Wagner’s V, . represented the
CS and the entire conditioning context and learning space. Sutton & Barto’s
a; X; represented the eligibility granted to the CS by the US in response
to its temporal and proximal association. According to Sutton & Barto
[6, p.505] stimulus eligibility trace offered and is evidenced in an organism’s
or subject’s attention, perceived stimulus salience, concept generalization,
perceived contrast, stimulus learning (memory) traces, and other aspects of
CS representations.

A third major difference between both models stems from their respective
interpretation of (A — V,,) and (A — V). Rescorla & Wagner associated
(A —V,,) with the US and CS, respectively. They monitored the extent by
which the CS takes on US qualities and the evidentiary difference between
the two. The smaller the difference they asserted, the larger the associative
strength and the larger the CS rigor for predicting later US occurrence and
vice versa. The accuracy of the conditioned response (CR) and evidence
of accelerated learning are thus reflected in reduced distance between both
values.

Sutton & Barto [6] interpreted Rescorla & Wagner’s (A — V) as being
a discrepancy "between expected and actual US events (A — V). (Sutton
& Barto [6, p.502] suggested that) they (Rescorla & Wagner) denoted this
discrepancy A — V where, \ represents the actual US level on the trial and
V represents the expected or predicted level. The predicted level, V, is a
composite or total prediction depending upon the associative strength of all



the CSs present in the trial. . . If training is continued with the same CSs,
then their composite prediction, V', should approach \.”.

Sutton & Barto [6, p.503]assessed a weakness in the Rescorla & Wagner’s
model and referenced its lack of representation of second order-conditioning
(i.e. stimuli that are in temporal proximity with the CS). However, Rescorla
& Wagner incorporated all stimuli associated with the conditioning context
and the CS into their Vjx value and, as a result, did indeed account for
instances of second order conditioning.

Furthermore, Sutton & Barto questioned the negative value attained from
A — V. When experimentally implemented the negative value derived from
this formula seemed to decrease with CS prediction accuracy. As V ap-
proached its valuation to A, it was never really possible for V to reach nu-
merical valuation of zero or 1. In addition they cited that when the US ()
was not available during a trial, the CS (V) became a negative number. But
this assertion is weakened when one recalls that the formula, A — V,x, sug-
gested the relationship between the US and the CS and the nature of the
associative strength (however manifested) between both, not the presence or
absence of either in any specific trial.

0.2.2 Time Derivative Model of Pavlovian Conditioning

As Rescorla & Wagner, Sutton & Barto were influenced by Hull approach
to reward learning theory. Like Hull [3], they believed that reward learn-
ing analysis should include an approach to equation development that em-
phasizes probability and prediction. They believed in the importance of a
theoretical reference to the organism’s or subject’s perception of the interval
between CS offset and US onset (or the temporal, proximity between the
US-CS) [5, 6]. Hull called this interval stimulus trace; Sutton & Barto called
it eligibility trace. Instead of monitoring task-related parameters, Sutton &
Barto reasoned that a representation and objectification of a theoretical ex-
ternal reward learning state more accurately depicted processes underlying
the later generation of task-related behavior.

Sutton & Barto [5] initially sought to clarify on their reward learning
model when they developed their Y ("Y dot”) theory of Pavlovian reinforce-
ment. Accordingly, Y represented the perceived associative strengths of all
stimuli (e.g. US, CS, and stimuli in the conditioning context) present dur-
ing the reward learning task. Y represented the perceived change in time
interval. These relationships are noted below.

Y(t) =Y (1) = Y(t— Ab)



Whereby, the change in associative strength in all stimuli at time (t) is
the sum of associative strengths of all stimuli less the difference between the
associative strength of stimuli at one point in time and less the time the
change occurred. The difference, Y (¢t — At), yields the time that the task
stimuli exerted some influence at mediating future reward learning response
or the change in learning response. Succinctly stated, the change in asso-
ciative strength is the difference between the total associative strength of all
stimuli at time (#) less the impact of recent learning on the total.

When Sutton & Barto [6] integrated both equations, i.e. the Y theory
of reinforcement with the X eligibility trace, the following time derivative
model was developed.

A‘/l = BY X OéiXi

Whereby the organism’s or subject’s change in reinforcement value evolves
from US’s actual occurrence evidenced in (5 and the changes in its associa-
tive strength (Y) as well as the interaction between the CS’s (a;) and the
eligibility trace afforded to it by the US’s X;. Unlike the Rescorla & Wag-
ner Model, the Sutton & Barto model [6] did not examine the relationship
between the US and CS as well as the US relationship with the conditioning
context (Vax). It did not, as well, monitor the rate of learning or salience.
But due to its emphasis on predictability, the Sutton & Barto model seeks
to represent the external state of the the reinforcement environment, moni-
tors theoretical expected outcomes and a task’s trial’s actual outcome, and

monitors the changes in state responses over progressive time periods.

0.2.3 Reinforcement Learning

When Sutton & Barto [1] developed their own model for Reinforcement
Learning, their theoretical framework included references to discrete time
(t1), i.e. time intervals or separate events units, payoffs, i.e. incentive for
producing certain actions (a,), state information (s;), i.e. external state
representations ”of complex world models and memories of past sensations
and behaviors” (s, ;) (p.548), and finally optimality. Optimality reflected
the tendency for current payoffs to retain their full valuation in response
to their immediacy (r;). Future payoffs (r,.; or R) tend to increasingly
reduce their valuation and are subject to the effects of incremental dis-
counting (™ and 4"r,41). This discount rate is facilitated by the Present
Value of future rewards [7]. This is evidenced in the characterization below.
Whereby, more immediate returns (r;) are fully valued, but those in the fu-
ture (y?rs and y"r, ;) are experienced as decreasing in valuation in response



to increasing discounting, where 0 <y < 1 [1, p.552].
PR AT T e T

Barto,Sutton, &, Watkins [1] indicated that the state of any system is
the sum of its past and current state. This can be depicted accordingly.

n
Ssy:Zst_mLst... y, where s;41 =y, sy €S | sy = s.
=1

However, Sutton & Barto [1, 551] asserted that the system state in to-
tal (Ssy), including future input, will determine probabilities and the basis
for characterizing action, irrespective of how that state system evolved and
emerged. The organism or subject observes this state system and performs
an action, which precipitates later system delivery of a return or payoff. This
action triggers a transition to a new external state. The organism or subject
observes this new state engages in another new action and receives another
new payoff and transition to another state.

Prob{s;s1 = y|so, ag, s1,a1,...,8 = S,a;, = a}

= Prob{sit1 = yl|s: = s, a; = a} Py, (a)

The future probability for transitioning from one initial state (s;) to a
future (reward) state (y;) evolves from the initial basal state and subsequent
action and then later sequentially generated states and actions. Each state
(s¢) is in a discrete time period (t,) and is elicited from a specific action
(an), seeks to obtain a payoff or return or primary reinforcement (r;). The
task-related goal is to select actions (ag, aq, as, . . ., a,) with associated previ-
ous and subsequent states (o, s1, So, - . ., S, ) that can increase the probability
(Prob{s;;1}) for obtaining a total and cumulative amount of payoff or (fu-
ture) return (r,41). The outcome of this behavioral sequence is a transition
to a new state (from state s to state y) having a probability of Py (a) as a
result of the agent’s action (a;). This process forms a Markov Chain with
transition state probabilities where Py, = Py, (7(s)).

Each action that elicits a later payoff is based on a decision or policy
(), which at a certain previous point in time had been generated from a
theoretical perceptual and spatial analysis of the state of the task and reward-
related perceptual stimuli (i.e. its temporal proximity, intensity, valence,



meaningfulness, etc.). The policy (7) is a "mapping from each state and
action...” [7, p.68]

During each trial, the expected (E) future return (r,,,) evolves from the
state (s;) and action (a;) at a discrete time period (t). The expected value of
the future return (r,,, or R) is associated with state and action information.
This can be summarized as follows.

Elr,.\|sia:] = R(st, ar)

A selected policy () is often valued (V') and associated with reward (r)
and the reward state (s) and can be summarized as V™ (s). V™(s) can lead to
future outcomes for future reward (r,,,) and associated state (s,,, or state y).
This expected future return state (£,,,,(s)) is also discounted (v) as a bird
in hand (reward) is worth more than 2,3,4,...,n in a bush. Accordingly,
the value (V') of a policy or strategy (m) that is associated with the reward
state (s) is the expected policy’s (E,) sum of discounted, total future returns

(ria)-

V7(s) = EW[Z Vrealse = s
=0

And the value (V') of the policy or strategy for experiencing the reward
state (V™ (s)) is the expected policy’s (E,) future return and discounted sum

of discounted future returns (r,, ).

V(s) = Ex{ res1 + ’YZVtTt+1|5t = s}

t=0

As with the Bellman Equation the value [7, p.68-69]of a policy is a state,
which is associated with all policies and respective reward states and ac-
tions, all probabilities and associated with actions facilitating transitions
from states s to y, future returns associated with actions that allow tran-
sitioning from one state (s) to another (y), and the discounted expected
policies (yE,) sum of discounted future returns (y'r,, ).

t=0

VW(S> = Z 7T(87 CL) Z Psay [ng + VEW{Z fytrt+2|3t+1 = y}]
a Yy



The value of the policy or strategy is a state, which is associated with all
policies and reward states and actions, all probabilities and actions facilitat-
ing transitions from states s and y, future returns associated with actions that
transition from one state (s) to another (y), and the value of the discounted
valued policies (yV™) that are associated with future returns states.

V™(s) =Y m(s,a) > Pe R, +AV"(y)]

0.2.4 Temporal Difference Prediction (1))

As noted in Section 0.2.1, the formula, A — V, reflected the difference and
discrepancy between an expected US occurrence (\) less its actual outcome
(V). This difference fundamentally represented the learning process and the
ability for predicting a future occurrence for reward.

According to Sutton & Barto [6, 7] prediction can be expressed through
two different models, the Monte Carlo Method and the Temporal Difference
Model. The Monte Carlo Method is based on previous reward state infor-
mation observed during a completed sequence of trials within an episode.
Knowledge of the reward and state information is therefore known prior to
subsequent problem analysis. Accordingly, the Monte Carlo Method uses
this model to base its analysis and future prediction. In order to calculate
a prediction, some prior knowledge of the state and return is needed before
problem analysis. The valued state at time, ¢, can be estimated from prior
knowledge of the valued state from an earlier episode, s, ,, a step-state pa-
rameter, «, and the total future return R;, and time, ¢, less the value of the
state at time, .

Vi(s) < V(si—1) + a[Ry — V(sy)]

The Temporal Difference Model [7] does not require prior knowledge of
the environmental model. It bases its estimate on a previous trial within a
specific task or problem. By analyzing what was learned in the prior trial,
one can generalize, estimate, and predict what will later happen. As such,
preliminary knowledge of the environment is not necessary in the Tempo-
ral Difference Method’s prediction calculation. The valued state at time,
V' (s¢), can be calculated from a small sample (e.g. single trial reward-state
information) representing the valued state, s%, a step-state parameter, «,

the assessed future return, 7, and the discounted value of the future state,



YV (s,,,), less the value of the state at time, V(s;). V(s,,,) reflects the end

of the task or the problem.

t+1)

V(s) — V(st) + alre + 9V (s0) — V(s)]

The Monte Carlo Method [7] is an off-policy method, which when imple-
mented, compromises ongoing task-mediated exploration and exploitation
due to analysis that draws from prior representations. Sutton & Barto de-
veloped a TD on-policy method, the Sarsa On-Policy Method, which allows
for intermittent exploration, problem-solving, and on-line evaluation. Like
the Temporal Difference Model, the Sarsa On-Policy Method does not re-
quire prior knowledge of the environmental model, bases its analysis on an
element or sample within the task or problem, generalizes those results, etc.
Accordingly, the on-line valued state and action for attaining reward at time,
Q(s¢, as), can be derived from a small sample representing the valued state
and action (from a single trial) or s= or an, a step-state parameter (a) the
assessed future return (r,,,) and the discounted value of selecting future ac-
tion and the resultant state (yQ(s,,,,qa,,,)) less the actual state and action
at time (Q(s¢, ar)). Q(S,,,,a,,,) reflects the end of the task or the problem.
Therefore, (s, at, rey1, Sto1, arr1) suggest a quintuple of intervals, which tran-
sition from one state-action to another. Manifestation of Q™ is suggested in
the interaction between s, and a;.

1 1

Qs ar) — Q57,0 ) + afry + 7@(5?4-17 a?+1) — Q(5¢,a1)]

According to Sutton & Barto [7], TD methods represent a policy () in-
dependent of the value function (V). The TD’s policy underlies later action
selection. The estimated value function (yV') ”criticizes ...actions made...”
and, as such, provides feedback for a selected action’s accuracy (and the un-
derlying policy’s accuracy) at matching to and satisfying task requirements.
This is reflected in a temporal difference error (§). This scalar signal is the
only manifested output representing the interaction between 7 and its esti-
mated value function, yV. When § < 0 and the TD error is negative, the
selected action is judged inaccurate, and should be abandoned. If § > 0 and
the TD error is positive, the selected action is considered accurate and should
be utilized. As such, the TD error can evaluate and is a manifestation of the
new state.

O =11 F YV (5141) — V(se)
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Such that the temporal difference error (9) at time () is the future return
and the discounted value of the future state less the value of the state at time
t.

The temporal difference model may be a useful tool for understanding the
nature and magnitude of emotion. Subsequent discussion will examine and
analyze existing models, which seek to explain sensori-emotional appraisal
and emotion. Later discussion will seek to integrate previously discussed
concepts into a model, which can be used for understanding the role of reward
and the impact of its disruption on the chronic stress response.
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